当今最复杂的椭圆曲线找到了!29个独立有理点打破18年记录

对现代密码学稍有了解的人都必定听过椭圆曲线的赫赫威名,但椭圆曲线本身依然还存在很多悬而未决的问题。今天,量子杂志作者 Joseph Howlett 介绍了这方面的一项打破 18 年记录的新突破:找到了一条迄今为止有理点模式最复杂的椭圆曲线。


今年 8 月,两位数学家发现了一条打破记录的怪异曲线。在此过程中,他们触及了一个仍待解决的重大难题 —— 其涉及到数学领域一类最古老、最基础的方程。

椭圆曲线至少可以追溯到古希腊,是许多研究领域的核心。它们具有丰富的底层结构,数学家们用它开发了许多强大的技术和理论。在 1994 年 Andrew Wiles 著名的费马大定理(是当时数论领域最重要的未解问题之一)证明中,椭圆曲线就发挥了重要作用。椭圆曲线对现代密码学也至关重要。

即便如此,对于椭圆曲线的某些最基本的问题,数学家们仍在寻找答案。举个例子,他们常通过研究椭圆曲线上的特殊「有理点(rational point)」来描述其特征。在一条给定的曲线上,这些点会形成清晰且有意义的模式。但我们目前尚不清楚这些模式的多样性和复杂程度是否有极限。

通过解答这个问题,可让数学家们理解数量巨大且种类繁多的椭圆曲线世界 —— 这个世界中的许多曲线都仍未得到探索。因此,数学家们开始探索这个世界的外围,寻找模式越来越奇怪的异常曲线。这个过程很艰辛,并且既需要创造力,也需要复杂的计算机程序。

现在,哈佛大学的 Noam Elkies 和加利福尼亚州拉霍亚通信研究中心的 Zev Klagsbrun 这两位数学家发现了一条至今为止有理点模式最复杂的椭圆曲线,打破了 18 年前的记录。

「这个阻碍能否打破是一个重大问题。」克罗地亚萨格勒布大学的 Andrej Dujella 说,「对于我们所有研究和关注椭圆曲线的人来说,这是一个非常令人兴奋的结果。」

原文链接:
https://www.quantamagazine.org/new-elliptic-curve-breaks-18-year-old-record-20241111/
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;b9d018b1.2409&FT=&P=&H=&S=b



感谢阅读!如果您对AI的更多资讯感兴趣,可以查看更多AI文章:GPTNB

当今最复杂的椭圆曲线找到了!29个独立有理点打破18年记录

https://www.gptnb.com/2024/11/13/2024-11-12-auto5_2-v7YBRH/

作者

ByteAILab

发布于

2024-11-13

更新于

2025-03-21

许可协议